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Abstract Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome 

(SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology 

potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting 

enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, 

renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in 

subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical 

science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas 

of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
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T he global epidemic of severe acute res-
piratory syndrome (SARS)-CoV-2 

(also referred to as COVID-19) has immediate 
implications for the therapy of common meta-
bolic disorders such as type 2 diabetes (T2D). 
Moreover, individuals with obesity are known to 
be at increased risk for complications arising from 
influenza, and obesity is emerging as an important 
comorbidity for disease severity in the context of 
SARS-CoV-2 (1). Cells within the lung, including 
pneumocytes, represent major cellular sites for 
coronavirus entry and inflammation (2). Some of 
these pulmonary cells may also express key proteins 
facilitating coronavirus entry into cells, such as 
angiotensin-converting enzyme 2 (ACE2), trans-
membrane protease serine 2 (TMPRSS2), and for 
some viral strains, dipeptidyl peptidase-4 (DPP4). 
ACE2 and DPP4 also have established pleiotropic 
metabolic activities directly contributing to the 
physiological and pharmacological control of car-
diovascular and glucose homeostasis, and DPP4 
inhibitors are widely used for the treatment of T2D. 
Here, we discuss current and evolving concepts 
relevant to the metabolic impact of coronavirus 
infections with attention to key pathways and 
mechanisms simultaneously linked to the patho-
physiology and treatment of T2D.

Rates of Diabetes and Obesity in Subjects 
with Coronavirus Infections

Diabetes is associated with an increased risk of 
severe bacterial (3) and viral respiratory tract 
infections, including H1N1 influenza (4). Analysis 
of more than 500 subjects hospitalized with SARS-
CoV in China revealed that elevations in fasting 
glucose were associated with increased rates of 
death; however, hyperglycemia was often tran-
sient, and generally resolved after discharge from 
hospital in the majority of subjects (5). A diagnosis 
of diabetes was associated with a 3-fold increased 

risk of mortality in a retrospective analysis of 114 
adults hospitalized with SARS-CoV in Toronto 
in 2003 (6). A  meta-analysis comparing patients 
presenting with H1N1 influenza vs. Middle East 
respiratory syndrome (MERS)-CoV reported that 
subjects with MERS-CoV were older (average age, 
54. vs. 36.2 years), with a 3-fold higher prevalence 
of diabetes (54.4 vs. 14.6%) in subjects with MERS-
CoV vs. H1N1, respectively (7). Diabetes was the 
comorbidity most strongly associated with adverse 
outcomes in several smaller studies of MERS-
CoV+ hospitalized subjects in Saudi Arabia (8, 9), 
and both hypertension and diabetes were strongly 
associated with mortality in larger retrospective 
analysis of 281 MERS-CoV+ Saudi subjects (10).

The rates of T2D in subjects with SARS-CoV-2 
vary, depending on the age and location of the 
study population, the severity of illness, and the 
method of testing. In 1 report, diabetes was pre-
sent in ~15% of 1099 patients, including children 
and adults, hospitalized in China with laboratory 
confirmation of the diagnosis (11). In contrast, 
diabetes was reported in 8.2% of 1590 Chinese 
subjects (mean age, 48.9  years) hospitalized with 
SARS-CoV-2, and rates of diabetes were higher 
(34.6% vs. 14.3%) in subjects with a composite 
endpoint (intensive care unit [ICU] admission, re-
quirement for ventilation, death) reflecting disease 
severity (12). Consistent with these observations, a 
retrospective analysis of 174 hospitalized persons 
in 1 hospital in Wuhan, China, in February 2020 
revealed a greater severity of illness, as assessed by 
laboratory evaluation of blood counts, parameters 
of coagulation, and biomarkers of inflammation 
in subjects with T2D (24/174) presenting without 
other comorbidities (13). Similarly, diabetes is 
among comorbidities associated with adverse 
outcomes in hospitalized patients with SARS-
CoV-2 in both China and Italy (14). In a series of 
168 lethal cases of SARS-CoV-2 pneumonia col-
lected from 21 hospitals between January 21 and 
January 30, 2020, in Wuhan, China, 75% were men, 

Essential Points

 • ACE2 and DPP4 are coronavirus receptors.

 • ACE2 and DPP4 control inflammation, and cardiometabolic physiology.

 • DPP4 is a MERS-CoV but not a SARS-Cov-2 receptor.

 • DPP4 inhibitors do not meaningfully modify immune response in human subjects.

 • SARS-CoV-2 hospitalizations are more common in people with diabetes and obesity.

 • Acute SARS-Co-V-2 illness requires re-evaluation of medications used for type 2 diabetes.

 • Insulin is the glucose-lowering therapy of choice for acute coronavirus-related illness in hospital.
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with a median age of 70, and diabetes was reported 
in 25% of the cases (15).

Analysis of a randomly selected subset of fatal 
SARS-CoV-2 cases in Italy (mean age, 79.5 years) 
revealed a prevalence of diabetes of 35% (16). 
A larger retrospective analysis of 1591 patients with 
SARS-CoV-2 hospitalized in ICUs of Lombardy, 
Italy, over a 4-week period reported a prevalence 
of T2D of 17% (17). Data reported for laboratory-
confirmed SARS-CoV-2 infections in the United 
States from February 12 to March 28, 2020, and 
tabulated by the Centers for Disease Control and 
Prevention for 7162 subjects with completed case 
information revealed a prevalence rates for dia-
betes of 6%, 24%, and 32%, for nonhospitalized, 
hospitalized but not requiring ICU admission vs. 
hospitalized in the ICU, respectively (18). Among 
hospitalized SARS-CoV-2+ patients assessed at 
a single health care center in New York between 
March 1 and April 2, 2020, the prevalence of di-
abetes was 15% in the SARS-CoV-2+  popula-
tion (19). However, prevalence rates for diabetes 
(31.8% vs. 5.4%) and obesity (39.8% vs. 14.5%) 
were greater in the hospitalized vs. nonhospitalized 
subgroups, respectively. Furthermore, a body mass 
index (BMI) > 40 was among risk factors most pre-
dictive of the need for hospitalization (19).

Pancreatic injury, determined by assessment of 
plasma levels of amylase and lipase, was reported 
in 9/52 patients hospitalized with SARS-CoV-2-
associated pneumonia in China, and 6/9 subjects 
also exhibited moderate increases in plasma glu-
cose (20). This emerging putative association of 
pancreatic injury and SARS-CoV-2 is consistent 
with expression of ACE2 in the exocrine and endo-
crine pancreas (2).

Obesity is also a risk factor for increasing se-
verity of SARS-CoV-2-related illness. Analysis 
of 124 consecutive ICU admissions in a single 
center in Lille, France, from February 27 to April 
5, 2020, revealed greater rates of obesity and se-
vere obesity among SARS-CoV-2 patients, relative 
to historical non-SARS-CoV-2 controls (21). The 
frequency of obesity was 47.5% in this observa-
tional study, compared with 25.8% in a historical 
control group of ICU subjects with non-SARS-
CoV-2 illness, and the requirement for intubation 
and mechanical ventilation was higher in subjects 
with obesity. Related observations were reported 
in a retrospective analysis of 3615 SARS-CoV-2+ 
subjected presenting to the emergency room at a 
single medical center in New York from March 4 
to April 4, 2020. Individuals with obesity or severe 
obesity <60 years old were more likely to require 
acute medical care and admission to the ICU (22). 

Consistent with these findings, a great proportion 
of 3883 critically ill patients with SARS-CoV-2 
admitted to ICUs from March 1 to April 5, 2020, 
in England, Wales, and Northern Ireland were re-
ported to have a BMI > 30, relative to critically ill 
historical controls hospitalized in the ICU from 
2017 to 2019 with viral pneumonia (23). Moreover, 
a progressive increase in BMI was associated with 
greater mortality in subjects with SARS-CoV-2 in-
fection, relative to BMI-matched hospitalized ICU 
controls with viral pneumonia.

Diabetes, Infection, and Immune Responses

Acute viral respiratory infection has been linked to 
the rapid development of transient insulin resist-
ance, both in otherwise healthy euglycemic normal 
weight or overweight individuals (24). Moreover, 
infection, severe illness, and medications such 
as glucocorticoids impair insulin sensitivity and 
often necessitates adjustment of glucose-lowering 
medications and insulin dosage in the hospital. 
Worldwide, infectious diseases contribute to ex-
cess mortality in individuals with diabetes (25). 
Mortality was increased in older patients with 
diabetes in a retrospective analysis of people in 
French ICUs hospitalized with pulmonary and in-
vasive pneumococcal infection (26). Nevertheless, 
some studies show no differences, when corrected 
for age and comorbidities, in plasma biomarker 
responses or hospitalization outcomes in people 
with diabetes hospitalized in the ICU with sepsis 
(27). The diagnosis of diabetes has been linked to 
increased susceptibility to and adverse outcomes 
associated with bacterial, mycotic, parasitic, and 
viral infections (28), attributed to a combination 
of dysregulated innate immunity and maladap-
tive inflammatory responses (3). Pulmonary and 
systemic coronavirus infection, including SARS-
CoV-2, may be complicated by secondary bacterial 
infection, reflecting compromise of epithelial bar-
rier function in the lungs and in the gastrointes-
tinal tract. A substantial number of subjects with 
diabetes are at increased risk for infection because 
of concomitant immunosuppression associated 
with a history of solid organ transplantation (29).

Coronavirus Infections and the 
Gastrointestinal Tract

As the primary site of energy absorption, the gut 
plays an important role in metabolic homeostasis, 
through production of metabolically active gut 
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hormones, interaction with microbiota, and via its 
potential capacity to contribute to gluconeogenesis 
(30). Moreover, a healthy gut is essential for the 
absorption and action of several glucose-lowering 
medications, including the widely used metformin 
(31), delivered orally for the treatment of T2D. 
Of potential clinical relevance, DPP4, ACE2, and 
TMPRSS2 are substantially expressed beyond the 
lung within epithelial tissues including small and 
large bowel enterocytes (2, 32, 33). Experimental 
inoculation of MERS-CoV into the murine gut of 
human DPP4+ transgenic mice produces a lethal 
infection, associated with progressive systemic 
viral dissemination (34). Initial reports describing 
clinical symptoms in 1099 hospitalized SARS-
CoV-2 patients in China reported a low rate (<5%) 
of gastrointestinal complaints. Consistent with 
the potential importance of enterocyte viral entry, 
symptoms of gut inflammation, including nausea, 
vomiting, and diarrhea, are reported in some se-
verely ill individuals with MERS (8). Notably, 
subjects with SARS-Cov-2 may present with gastro-
intestinal distress without symptoms of pulmonary 
infection (33). A  subset of these individuals also 
exhibit clinical evidence of liver injury, and glu-
cose levels were higher in more severely ill patients 
(35). Whether oral absorption of medications for 

T2D, or the actions of some of these drugs on the 
liver, might be impaired in a proportion of infected 
subjects with T2D and gastrointestinal dysfunction 
has not been determined.

ACE2 Biology Relevant to Diabetes

ACE2, an 805-amino acid transmembrane 
carboxypeptidase enzyme and functional corona-
virus S1 subunit receptor cleaves the last amino 
acid of angiotensin (Ang) II (Fig. 1), and generates 
vasodilatory Ang (1-7), collectively modulating 
often opposing actions of Ang II and ACE through 
Ang and angiotensin (1-7) receptors. For ex-
ample, reduction of ACE2 activity in the context 
of unopposed ACE1 action may lead to augmented 
signaling through angiotensin receptors (Fig.  1), 
increased aldosterone, and, possibly, increased 
blood pressure and hypokalemia.

The physiological actions of ACE2 relevant to 
metabolism are mediated in part through its ex-
pression in blood vessels, pancreas, and renal tu-
bular epithelium and via its enzymatic generation 
of Ang (1-7), which may antagonize the actions of 
Ang II (Fig.  1) (36). Within the pancreas, ACE2 
expression has been described in acinar cells and 

Figure 1. Metabolism of angiotensin I by ACE and ACE 2 (left panel) to yield different bioactive angiotensin peptides that exert their actions through distinct G protein 
coupled receptors. Selective cardiometabolic actions of Ang (1-7) are shown. ACE, angiotensin-converting enzyme; AT1R, angiotensin II receptor type 1; AT2R, angiotensin II 
receptor Type 2; MAS = angiotensin (1-7) receptor. The ACE2 receptor consists of 2 forms (right panel), an 805 amino-acid membrane-spanning molecule, and a smaller 740 
amino acid soluble (sACE2) circulating form, depicted below, which can theoretically serve as a decoy receptor for the MERS-CoV-2 protein. Both molecular isoforms of ACE2 
are capable of binding a subset of coronavirus spike proteins, including the SARS-CoV-2 spike protein. TMPRSS2, the membrane-anchored protease important for activation 
of the SARS-CoV-2 spike protein, and one of its inhibitors, camostat mesylate, is depicted
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within subsets of islet cells (37). Gain and loss of 
ACE2 function in preclinical studies reveals physi-
ological and pharmacological roles for ACE2, both 
dependent and independent of Ang (1-7), in glu-
cose control and β-cell function, renal physiology, 
blood pressure, atherosclerosis, and amelioration 
of experimental diabetes (38-42). Nevertheless, 
the importance of ACE2 for glucose control, in-
dependent of the angiotensin pathway in humans, 
has not been conclusively established.

ACE2 expression in the lung has been 
detected at low levels in some studies, and may be 
upregulated in the context of SARS-CoV-2 infec-
tion, with type 2 pneumocytes potentially serving 
as a key cell type facilitating pulmonary inflam-
mation (43). However, ACE2 is highly expressed 
in several extrapulmonary tissues, including the 
gut (2), and has multiple, often beneficial, roles 
in cardiometabolic physiology, including poten-
tial therapeutic activities in the heart, pancreas, 
and kidney. The potential biological importance, 
clinical relevance, and use of drugs such HMG 
CoA-reductase inhibitors, or medications blocking 
components of the renin–angiotensin–aldosterone 
system, such as ACE inhibitors and angiotensin re-
ceptor blockers, in the context of hypertension, car-
diovascular and renal disease, diabetes, and active 
SARS-CoV-2 infection has been reviewed (44-47).

Levels of urinary ACE2 protein and enzymatic 
activity are increased in subjects with both type 
1 diabetes (T1D) (48) and T2D (49), and values 
for urinary ACE2/creatinine ratios correlate posi-
tively with fasting blood glucose and hemoglobin 
A1C (50). However, whether ACE2 is mechanis-
tically linked to the development of dysglycemia 
or complications in people with diabetes is uncer-
tain. ACE2 is also highly expressed in the human 
small and large intestine (51) and ACE2 mRNA 
transcripts are upregulated in duodenal biopsies 
taken from individuals treated with ACE inhibitors 
(52). Expression of ACE2 RNA and protein, as well 
as Ang (1-7) is upregulated in jejunal enterocytes 
isolated from rats with streptozotocin-induced di-
abetes (53). Whether hyperglycemia and/or insulin 
deficiency similarly regulates ACE2 expression in 
human tissues has not been studied.

ACE2 can also cleave other metabolically active 
substrates in addition to angiotensin, including 
apelin-13, des-Arg9-bradykinin, neurotensin 
(1-13) β-casomorphin, dynorphin A  1-13, 
and ghrelin (36). The cell-associated proteases 
TMPRSS2 and a disintegrin and metalloproteinase 
17 both cleave ACE2; however, TMPRSS2 pre-
dominantly facilitates SARS spike protein-driven 
cellular entry (54). As described for DPP4, the 

membrane-tethered ACE2 enzyme can be cleaved 
to yield a soluble circulating form ACE2(1-740); 
however, the biological importance of soluble 
ACE2 (sACE2) remains uncertain. The extra-
cellular domain of both ACE2 and sACE2 bind 
SARS-CoV (55), and SARS-CoV-2 (56), raising the 
possibility of exploring pharmacological adminis-
tration of recombinant sACE2 as a therapeutic ap-
proach to sequester and block coronavirus cellular 
entry (57).

Rats with streptozotocin-induced dia-
betes exhibit reduced pulmonary expression of 
ACE2 mRNA. Treatment of diabetic rats with 
the glucagon-like peptide-IR (GLP-1R) agonist 
liraglutide twice daily for 7 days increased pulmo-
nary ACE and ACE2 mRNA expression, associated 
with increased surfactant protein expression in the 
lung, and up-regulated circulating levels of Ang  
(1-7, 58). Notably, liraglutide had no effect on 
glucose control or insulin levels in this model, 
consistent with the possibility that direct aug-
mentation of pulmonary GLP-1R signaling, rather 
than indirect GLP-1 actions on islet hormones, 
contributes to the restoration of the pulmonary 
renin-angiotensin system. Similarly, administra-
tion of the DPP-4 inhibitor linagliptin once daily, 
or liraglutide twice daily for 4 weeks, attenuated 
cardiac fibrosis and prevented the Ang II-mediated 
reduction in cardiac ACE2 activity in rats with 
Ang II-induced hypertension (59). However, the 
putative pathophysiological significance of these 
findings in the context of experimental corona-
virus infection has not been explored.

Transmembrane Serine Protease TMPRSS2

TMPRSS2 is a serine protease highly expressed 
within the lung and gastrointestinal tissues, in-
cluding stomach, small and large bowel, pan-
creas, and liver. TMPRSS2 cleaves and activates 
some influenza A  and influenza B virus hemag-
glutinin envelope glycoproteins, thereby ena-
bling viral membrane infusion and infectivity in 
human airway cells and type 2 pneumocytes (60). 
TMPRSS2 also cleaves and activates the spike 
protein of SARS-CoV and MERS-CoV, enabling 
virus-membrane fusion. Indeed, genetic inactiva-
tion of TMPRSS2 in mice attenuates the extent of 
lung damage and inflammation induced by experi-
mental infection with MERS-CoV and SARS-CoV 
(61). The importance of TMPRSS2 for viral path-
ogenicity is also revealed through studies using 
TMPRSS2 inhibitors, such as camostat mesylate, 
which attenuates SARS-CoV-2 infection of human 
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lung cells cultured ex vivo (62). Camostat mesylate 
has been approved in Japan for the treatment of 
pancreatitis and short-term use for 28 days reduced 
urinary protein excretion, evident by 7 days, in 3 
subjects with nephrotic syndrome secondary to 
diabetic kidney disease, without coexistent pan-
creatitis (63). There is little information informing 
whether the regulation of TMPRSS2 expression or 
activity is regulated by glucose, or dysregulated in 
the context of experimental or clinical diabetes.

Dipeptidyl Peptidase-4

DPP4, originally identified as the T-cell activa-
tion antigen cluster of differentiation 26 (CD26), 
is a widely expressed 766 amino-acid cell-surface 
endopeptidase that interacts with cellular proteins 
such as adenosine deaminase and caveolin-1 to 
generate intracellular signals governing immune 
responses (64). DPP4 also cleaves a wide range 
of peptide hormones, chemokines, and bioactive 
immunomodulatory proteins (Fig.  2) (65), most 
commonly at the position 2 alanine or proline, 
resulting in inactivation of peptide action, or 
switching of peptide receptor affinity (64). DPP4, 
like ACE2, is shed from the cell membrane, and 
circulates as a 727 amino-acid soluble moiety 
(sDPP4) containing amino acid residues 39 to 
766 that retains catalytic activity. sDPP4 exerts 
pro-inflammatory activity alone, or through 

association with factor Xa, independent of its cat-
alytic actions by interacting with cell-associated 
caveolin-1 or proteinase activated receptor 2 on 
macrophages or lymphocytes (66). Circulating 
DPP4 activity and levels of sDPP4 are increased 
in humans with hepatitis C and miscellaneous 
viral infections (67). However, sDPP4 levels were 
lower when measured in 14 subjects with MERS-
CoV infection (68). Similarly, circulating sDPP4 
levels were also reduced in humans with primary 
HIV infection (69). Within the human respiratory 
tract, immunoreactive DPP4 has been localized 
to immune and endothelial cells, pleural meso-
thelium, lymphatics, and both type 1 and type 2 
pneumocytes (70). Increased DPP4 RNA and pro-
tein expression was detected in pneumocytes from 
subjects with a history of smoking, or lung disease, 
including chronic obstructive pulmonary disease 
(70, 71).

Human DPP4 is a Coronavirus Receptor

Membrane-associated human DPP4 is also a func-
tional coronavirus receptor (72), interacting with 
MERS-CoV through the spike glycoprotein S1b do-
main. After binding DPP4, MERS-CoV S protein 
is cleaved and activated by TMPRSS2 or cathepsin 
L, facilitating viral entry (73). Human neutralizing 
antibodies directed against the receptor-binding 
domain of the MERS-CoV Spike protein block 

Figure 2. Dipeptidyl peptidase-4 exists as a membrane anchored and smaller circulating smaller form (left panel), with both molecules retaining enzymatic activity. Right panel 
depicts peptide substrates of DPP4, as modified from (64). BNP, brain natriuretic peptide; CCL, CC motif chemokine ligand; CCXL, C-X-C motif chemokine ligand; GALP, galanin-
like peptide; GIP, glucose-dependent insulinotropic polypeptide; G-CSF, granulocyte colony stimulating factor; GLP-1, glucagon-like peptide-1; GLP2, glucagon-like peptide-2; 
GM-CSF, granulocyte macrophage colony stimulating factor; GRP, gastrin releasing peptide; HMGB1, high mobility group box 1; NPY, neuropeptide Y; PACAP, pituitary adenylate 
cyclase activating peptide; PHM, peptide histidine methionine; PYY, peptide YY; VIP, vasoactive intestinal polypeptide; XCL-1, X-C motif chemokine ligand 1.
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viral binding to human DPP4, thereby inhibiting 
MERS-CoV infection (74). Similarly, recombinant 
human adenosine deaminase blocks spike protein 
S1 binding to DPP4 and inhibits MERS-CoV in-
fection of cells transfected with human DPP4 (75). 
Studies examining 10 different bat cell lines ex vivo 
demonstrate that the susceptibility or resistance to 
MERS-CoV infection correlates with the presence 
or absence of cell surface-expressed DPP4, whereas 
anti-DPP4 antibodies blocked acute viral infec-
tion in susceptible bat cells in a dose-dependent 
manner (76).

A few naturally occurring DPP4 polymorphisms 
have been described that alter the amino acid se-
quence of DPP4 so as to diminish binding of MERS-
CoV subunit 1 protein with specific DPP4 isoforms; 
these variants are associated with reduced viral cell 
entry (77). Mouse DPP4 does not bind corona-
virus spike protein subunits because of differential 
glycosylation of the mouse vs. the human DPP4 
protein. The key amino acid differences mediating 
differential glycosylation have been localized to 
positions 288 and 330 (78, 79). Substitutions of the 
amino acids at A288L and T330R from human to 
mouse DPP4 using clustered regularly interspaced 
short palindromic repeats-Cas9 gene editing is suf-
ficient to confer murine susceptibility to MERS-
CoV viral infection and replication (80), resulting 
in infected mice exhibiting severe lung injury and 
features of respiratory distress syndrome.

Similarly, transgenic mice engineered to express 
human DPP4 become susceptible to lethal coro-
navirus infection with MERS-CoV (81). High-fat 
diet-fed transgenic mice expressing human DPP4 
infected with MERS-CoV exhibit more severe 
prolonged disease with unresolved pulmonary 
inflammation and delayed recovery, associated 
with dysregulated cellular immune and cytokine 
responses, despite apparently similar levels of 
viral replication and clearance (82). Humanized 
(hDPP4) mice may represent useful preclinical 
models for assessment of antiviral therapeutics. 
Studies administering 2 human antibodies 
(Regeneron 3051 and Regeneron 3048)  demon-
strate interruption of the interaction of the MERS-
CoV spike protein with hDPP4, and attenuated 
lung pathology in mice with experimental MERS-
CoV infection (83).

Surprisingly, transgenic mice overexpressing 
hDPP4 exhibited relative resistance to MERS-CoV 
infection, exemplified by less lung inflammation 
and reduced rates of mortality. Intriguingly, these 
hDPP4 transgenic mice with higher levels of hDPP4 
expression also exhibited increased circulating 
levels of sDPP4 and administration of recombinant 

sDPP4 attenuated lung histopathology and reduced 
the titers of virus recovered from lung tissue (84). 
In a small study of 14 subjects hospitalized in 
Korea, circulating levels of sDPP4 were lower 
in human subjects with MERS-CoV, relative to 
healthy controls (68). Levels of sDPP4 found ef-
fective for partial suppression of viral MERS-CoV 
entry into cells ex vivo were much higher than cir-
culating levels of sDPP4 in human subjects. Hence, 
whether sDPP4 exhibits therapeutic potential for 
use as a soluble decoy receptor (Fig. 2), binding to 
and partially sequestering circulating MERS-CoV 
requires further investigation. Intriguingly, MERS-
CoV strains with point mutations in the receptor-
binding domain of the viral spike (S) protein have 
been isolated from an outbreak in South Korean 
subjects and these strains exhibit reduced binding 
to human DPP4 and decreased viral entry into 
cells ex vivo (85). However, the pathophysiolog-
ical significance and implications of these findings 
requires further analysis.

DPP4, Inflammation, and the Human 
Immune System

Early studies examining the immunological 
properties of DPP4 often used nonselective 
DPP4 inhibitors; however, highly selective DPP4 
inhibitors have been developed for the treatment 
of T2D (64). Administration of the DPP4 inhibitor 
sitagliptin for 28  days to healthy human subjects 
had no effect on circulating leukocytes, including 
lymphocyte and T-cell subsets. Levels of 27 dif-
ferent plasma cytokines, and levels of more than 
a dozen cytokines released by stimulation of pe-
ripheral blood mononuclear cells with lipopolysac-
charide or anti-CD3 antibody were not different 
in sitagliptin-treated subjects (86). Similarly, 
sitagliptin administration for 24 weeks to HIV+ 
men and women, without an AIDS-defining illness 
or diabetes, had no effect on viral RNA load, CD4+ 
T-cell count; regulated on activation, normal T cell 
expressed and secreted; or levels of soluble TNF 
receptor II concentrations. Levels of total stromal 
cell-derived factor-1, also known as CXCL12, 
declined in sitagliptin-treated subjects (87).

The immunological consequences of sitagliptin 
therapy for 8 weeks was also studied in 36 HIV+ 
men and women with impaired glucose tolerance, 
simultaneously treated with chimeric antigen re-
ceptor T-cell therapy. Sitagliptin treatment was 
associated with reduced circulating levels of both 
C-reactive protein (CRP) and the C-X-C motif 
chemokine 10 (88). A  larger study randomized 
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90 HIV+ subjects on stable antiretroviral therapy 
without diabetes with ≥100/μL CD4 cells to either 
sitagliptin or placebo for 16 weeks. No differences 
were observed in the primary study endpoint, 
the levels of soluble CD14, a circulating marker 
of monocyte activation (89). Levels of CXCL10 
decreased; however, levels of other inflamma-
tory biomarkers such as sCD163, IL-6, high-
sensitivity CRP, sDPP4, sTNF-RI, sTNF-RII, and 
levels of total CD4 and CD8 counts were not dif-
ferent in sitagliptin-treated subjects (89). Similarly, 
in a small open label nonrandomized observa-
tional study of 34 subjects with T2D initiated on 
sitagliptin, levels of CD4(+)/CD8(+) cells, NK, and 
Th2 cells and plasma cytokine levels were not dif-
ferent after 1 year of therapy (90).

Consistent with the lack of a major effect of 
DPP4 inhibitors on immune function, administra-
tion of either the DPP4 inhibitor vildagliptin or the 
glucosidase inhibitor acarbose was compared in a 
crossover design for several weeks in 16 individuals 
with T2D. No differential effect of either drug was 
detected on plasma levels of IL-6 or CRP, nor was 
there any difference in the relative production of 
inflammatory cytokines from human mononuclear 
cells isolated from the study subjects and stimulated 
ex vivo (91). Hence, the available evidence does 
not support clinically meaningful alterations in 
markers of immune function after administra-
tion of DPP4 inhibitors in human subjects with or 
without T2D.

Clinical Safety of DPP4 Inhibitors

DPP4 inhibitors are widely used clinically for 
the therapy of T2D, and act selectively to inhibit 
the catalytic activity of cell-associated and cir-
culating sDPP4. When used in people with T2D, 
DPP4 inhibitors produce ~50% to 95% inhibi-
tion of DPP4 activity over a 24-hour period (92). 
Hence, some residual DPP4 enzyme activity is al-
ways present within tissues and in the circulation 
of subjects treated with DPP4 inhibitors. Extensive 
preclinical studies using highly selective DPP4 
inhibitors have not demonstrated evidence of im-
paired T cell-dependent immune responses (93). 
Despite initial concerns surrounding the poten-
tial safety of DPP4 inhibitors (64), there have been 
no major safety concerns related to infections or 
compromised immune function after more than 
13 years of clinical experience. A population-based 
cohort study of subjects with T2D assessed data 
from the UK Clinical Practice Research Datalink 
and found no increased risk of pneumonia in 

22435 subjects treated with DPP4 inhibitors, 
compared with 188614 individuals treated with 
other non-insulin glucose-lowering agents (94). 
These findings are consistent with a meta-analysis 
of multiple DPP4 inhibitor trials encompassing 
23456 study participants with T2D treated with 
a DPP4 inhibitor compared with 15300 controls 
in studies ranging from 18 to 104 weeks (95). No 
increased risk of infection was detected in subjects 
treated with DPP4 inhibitors. Consistent with 
these findings, results of large trials examining 
the safety of saxagliptin, alogliptin, sitagliptin, and 
linagliptin in humans with T2D at risk for cardio-
vascular or renal disease did not reveal clinically 
relevant safety concerns related to infections, im-
mune, or inflammatory disorders (96-100).

Use of Glucose-Lowering Therapies in 
Subjects with Coronavirus Infections

Metformin exerts anti-inflammatory actions 
in preclinical studies and reduces circulating 
biomarkers of inflammation in people with T2D 
(101). Metformin has also been used successfully 
in nonhospitalized subjects with stable hepatitis 
or HIV infections; however, there is scant infor-
mation about the immunomodulatory actions of 
metformin in the context of coronavirus infection. 
Several reports studying antibody titers in a small 
number of individuals have suggested that immune 
responses to influenza vaccination are modestly im-
paired in metformin-treated subjects; however, the 
clinical significance, if any, of these observations is 
uncertain (102, 103). Metformin should be used 
with caution in unstable hospitalized patients and 
should be discontinued in people with concom-
itant sepsis or severe impairment of hepatic and 
renal function.

Although DPP4 serves as a co-receptor for 
a subset of coronaviruses, there are few data 
informing whether any of the structurally distinct 
small molecule DPP4 enzyme inhibitors might 
sterically interfere with and modify the binding 
of MERS-CoV subunits to DPP4. DPP4 activity 
also potentially modulates the levels and bioac-
tivity of multiple immunomodulatory chemokines 
and cytokines (Fig.  2) (64). However, preclinical 
studies of mice with genetic or chemical reduction 
of DPP4 activity in the setting of diet-induced in-
flammation did not reveal dysregulation of tissue 
or systemic inflammatory markers, despite com-
plete absence or marked reduction of DPP4 ac-
tivity (104). The available evidence is insufficient to 
determine the impact, if any, of sustained partial 
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reduction of DPP4 activity, as achieved clinically 
in subjects with T2D treated with DPP4 inhibitors, 
on clinical outcomes in humans with active coro-
navirus infection. In individuals with active SARS-
CoV-2 infection and clinically significant volume 
depletion or systemic sepsis, a reduction in renal 
function may necessitate adjustment of the dose of 
some DPP4 inhibitors.

GLP-1R agonists exert broad anti-inflamma-
tory actions in animals with experimental in-
flammation, and reduce biomarkers of systemic 
inflammation in human subjects with T2D and in 
people with obesity (105). Circulating GLP-1 levels 
are induced by lipopolysaccharide in animals and 
humans (106), are increased in human subjects 
with sepsis and critical illness, and correlate with 
illness severity and mortality (107, 108). Multiple 
preclinical studies demonstrate that GLP-1R 
agonists attenuate pulmonary inflammation, re-
duce cytokine production, and preserve lung func-
tion in mice and rats with experimental lung injury 
(109-111). Notably, GLP-1R agonism reduces pul-
monary type 2 immune cytokine responses and the 
extent of lung injury in mice following infection 
with a respiratory syncytial virus isolated from a 
child with severe lower respiratory tract infection 
(112).

The results of several large studies examining 
the cardiovascular safety of GLP-1R agonists 
did not reveal imbalances in rates of inflamma-
tory disorders or severe infections (113-116). 
Liraglutide has been shown to be safe and effective 
when used for acute perioperative control of blood 
glucose in adult human subjects undergoing elec-
tive cardiovascular surgery (117). Similarly, twice-
daily exenatide appears safe and effective when 
used alone or in combination with basal insulin 
for blood glucose management in noncritically 
ill hospitalized patients with T2D treated on ge-
neral medicine or surgery wards (118). GLP-1R 
agonists have been explored as glucose-lowering 
agents in the perioperative period and in the ICU, 
and have generally been proven safe and effective 
for blood glucose management (119). However, 
the total number of subjects studied is small and 
duration of therapy is limited. Although GLP-1 
safely lowers blood glucose in short-term studies 
of ventilated patients with critical illness (120), 
there is insufficient experience with the safety and 
use of GLP-1R agonists in critically ill subjects 
to make therapeutic recommendations for use 
of these agents in the context of coronavirus in-
fection (121), and exenatide-based formulations 
should be stopped in subjects with deteriorating 
kidney function.

Insulin has been extensively used for decades to 
control glucose in critically ill hospitalized subjects 
with diabetes and the emerging use of contin-
uous glucose monitoring may lower the rates of 
hypoglycemia associated with insulin use in the 
hospital, including in some subjects with critical 
illness (122). Intriguingly, selective loss of insulin 
action in murine immune cells has been shown to 
attenuate the anti-inflammatory T-cell response to 
experimental influenza infection (123). Moreover, 
insulin exerts anti-inflammatory actions in 
humans and reduces biomarkers of inflammation  
in hospitalized individuals with critical illness 
(124). Among available agents for the treatment of 
acute illness complicated by diabetes, insulin has 
been the most extensively used agent in human 
subjects with bacterial or viral infections and in 
hospitalized critically ill patients. However, there is 
little information surrounding potential benefits or 
risks of insulin in the context of acute coronavirus 
infection.

Sulfonylureas increase the risk of hypoglycemia 
and are best avoided in hospitalized subjects with 
severe medical illness. Although SGLT2 inhibitors 
are generally well tolerated in the outpatient setting, 
and cardioprotective most notably in the context of 
heart failure, SARS-CoV-2 infection may be asso-
ciated with anorexia, dehydration, and rapid de-
terioration in clinical status. Hence, symptomatic 
individuals with T2D and active SARS-CoV-2 in-
fection may be at heightened risk for volume deple-
tion and euglycemic ketoacidosis. Accordingly, the 
available evidence suggests reevaluation of or dis-
continuation of these agents in very unwell ambu-
latory individuals, and the SGLT2 inhibitors should 
be routinely discontinued in unstable patients with 
severe SARS-CoV-2 infection upon admission to 
hospital (125).

Type 1 Diabetes and SARS-CoV-2

The available information does not indicate increased 
susceptibility to coronavirus infections in children 
or adults with T1D. People with T1D may find that 
interruption of normal daily activities, changes in 
type and frequency of exercise, and alteration of 
diet routines may alter glucose control necessitating 
reexamination of insulin requirements. In many 
instances, interactions with health care providers 
may be facilitated through telephone, e-mail, as well 
as telemedicine interactions, including uploading 
of glucose data facilitating adjustment of insulin 
regimens. A rise in blood glucose or marked change 
in 24-hour glucose patterns may be an early harbinger 
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of impending clinical infection in some individuals, 
prompting more frequent blood glucose and ketone 
monitoring. In some areas, disruption to medication 
supply chains may require additional vigilance and 
more regular communication between pharmacies, 
insurance companies, health care providers, and 
individual patients. The use of medications such 
as acetaminophen may introduce error into some 
technologies used for glucometer readings or contin-
uous glucose monitoring systems (126). Despite lim-
itations of access to health care providers, individuals 
with unstable kidney function or active retinopathy 
may need to be seen in the diabetes clinic for assess-
ment and appropriate therapy.

Conclusions, Limitations, and Areas of 
Uncertainty

The available evidence implicates diabetes and 
obesity as important risk factors impacting the 
clinical severity of coronavirus infections, in-
cluding SARS-CoV-2. Although ACE2 and DPP4 
are important physiological regulators of glucose 
homeostasis, there is little compelling clinical evi-
dence that drugs targeting ACE2- or DPP4-related 
pathways produce differential harm or benefit 
in the context of human coronavirus infections. 
Soluble decoy receptors for ACE2 or antisera 
directed against ACE2 may be promising investi-
gational interventions to block cellular coronavirus 
entry; however, the metabolic consequences, if any, 
of these investigational agents have not been care-
fully studied and requires ongoing scrutiny.

DPP4 inhibitors and GLP-1R agonists may 
exert anti-inflammatory actions in human 
subjects and have been successfully used to con-
trol glucose in hospitalized patients. However, 
there is insufficient experience with these agents 

to suggest they might safely replace insulin in 
critically ill subjects with coronavirus infection. 
Hence, the extensive historical experience with 
the use of insulin, bolstered by increasing adop-
tion of continuous glucose monitoring, supports 
the ongoing use of insulin as the agent of choice 
in the management of severely ill subjects with 
diabetes and coronavirus infections. There is in-
sufficient experience with diabetes and pregnancy 
in subjects with SARS-CoV-2 to make tailored 
therapeutic recommendations; however, modified 
screening guidelines for gestational diabetes have 
been proposed in the context of SARS-CoV-2 for 
individuals with limited access to regular clinics 
(127). The expression of ACE2 within the exo-
crine and endocrine pancreas highlights the need 
for vigilance in consideration of whether pancre-
atic inflammation reported in some individuals 
with SARS-CoV-2 infection may contribute to 
the exacerbation or development of diabetes in 
a subset of acutely ill patients. In hospitalized 
individuals with deteriorating renal function, the 
use of SGLT2 inhibitors and exenatide should be 
reconsidered or discontinued, and metformin and 
sulfonylurea dosing may also need to be reduced 
or stopped.

The rapid flow of new clinical information stem-
ming from the SARS-CoV-2 epidemic requires 
ongoing scrutiny to understand the prudent use, 
risks and benefits of individual glucose-lowering 
agents, and related medications commonly used 
in subjects with diabetes at risk of or hospitalized 
with coronavirus-related infections. Moreover, the 
current pandemic highlights the importance of 
opportunities for continuing and expanding in-
novative delivery of diabetes care through use of 
wearable and portable monitoring devices and reg-
ular communication between people with diabetes 
and their health care providers.
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